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otabilizer group

* Given a pure N-qubit stabilizer state |s), the unsigned stabilizer group is

G(|s)) ={P € Pn : P|s) = %|s)}

*Pn :the set of Pauli strings with trivial phase +1

* G(|s)) is generated by N mutually commuting Pauli strings




Stabilizer basis

- Given a stabilizer group G, the set of stabilizer states {|s) : G(|s)) = G} forms an
orthornormal basis, called stabilizer basis

» This basis can be constructed by introducing destabilizers d;, such that the stabilizer
states above can be written as {d;|s)};

* For any state, we can write

)= cdls)

l

Aaronson, Gottesman, PRA (2024)




Magic monotones

A magic monotone M (|y)) has to satisfy the following properties:

Faithful: M(|y)) = 0iff |y)isa STAB
Sub-additive: M(|y) @ [¢)) < M(|)) + M(|¢))

Non-increasing under Clifford operations:

M) < M([y), T eC

Non-increasing on average under measurements (strong monotonicity):

> 1 MUKipK; ) < M(Ip)




Why strong monotones®

* Question: can we transform m copies of a resource state p to k copies of a target state o
using Clifford operations?

* With deterministic transformation, then we must have
M(p™)>M (ak)

» With stochastic transformation with success probability p, if M is a strong monotone,
M(p™) > pM(c*)

 In the asymptotic limit (infinitely many copies), we define the regularized version
1
M*=(p) = lim —M(p")
n-ocon

Veitch et al, NJP 16 013009 (2014)




IKKnown magic monotones

* Most known magic monotones require optimization procedures to compute, thus
difficult to compute beyond a few qubits

» Strong but not computable: relative entropy of magic, robustness of magic

- Computable but not strong: stabilizer Renyi entropy (SRE)

» Can we construct a strong and computable monotone?




Stabilizer Renyientropy (SRE)

* A magic monotone for pure states based on expectation values of Pauli strings

* For a pure state |y), SRE is defined as

M, ([$)) = (1—n)log 3 Zp(jw)) — Nlog2,

PePn

where Ep(|¢)) = (¥|P|y)? /2N,

* A good monotone for integern = 2

Leone, Oliviero, Hamma, PRL (2020)




Violation of strong monotonicity

* A counter example of strong monotonicity for SRE of any index can be shown using the
state

¥) =~ (027 +10®]

where |x) = e~*™*%) cos 8|0) + sin B|1),

» After projective measurement on the first qubit, there is a finite probability that the

state is projected to
W) = 1) ® [x)®N

* The SRE is 0(1), which becomes O(N) on average

Haug, Piroli, Quantum 7, 1092 (2023)




ostabilizer linear entropy

 Stabilizer linear entropy defined as

M,llin =1 —exp(—M,)

was shown to be a strong monotone

- However, it is not additive: it can only take values between O and 1

* Theregularized version of M,,l,,,in is always zero — not useful for asymptotic state
transformation

Leone, Bittel, PRA 110 L0O40403 (2024)




Strong monotones

Generic monotones from resource theory:

» Relative entropy of magic _
Veitch et al, NJP 16 013009 (2014)

T = min S(pl|lo
m(p) e < (pllo)
* Robustness of magic Howard and Campbell, PRI 118, 090501 (2017)
— ] = — > .
R(p) S {219 + 1 | pi=ip-tLljoh~pd-, P2 0}




Asymmetry

* Given a group G, the G-asymmetry measures the asymmetry of a state p with respect to
G,i.e.,, how much it deviates from the ¢G-symmetric states

* In recent years, the quantity has been used to probe symmetry breaking by the name of
“entanglement asymmetry”

* Formally, G-asymmetry is a strong monotone in the resource theory of ¢-frameness

Gour et al, PRA 80, 012307 (2009)




Asymmetry

* For adiscrete group G, we consider the symmetrized state (via G-twirling operation)

1
=— Y UypU}
gG(p) |G| ~ gp g’
* The G-asymmetry is defined as

Ac(p) = S(pllGa(p))
= S(Ga(p)) — S(p).

S(plle) : quantum relative entropy

It has the following properties
1. Itisnon-negative, A;(p) =0

2. Itvanishesifandonlyif[p,G] =0

Gour et al, PRA 80, 012307 (2009)




Asymmetry

* Moreover, it is a strong monotone in the resource theory of G-frameness

Ag(sy)(p) 2 Z PiAc(sy)(Pi)-
i€{+’_}

* The Renyi version can be defined as

Ag,a(p) = Sa(Ga(p)) — Salp),

which also has the two properties above, but generally not strong monotonicity.

Gour et al, PRA 80, 012307 (2009)




Asymmetry for groups G c Py

 If the group ¢ is generated by Pauli operators Py, ..., P;, then
1
Ga(p) = o ) TrloPIP.
where G+ isthe group of Pauli operators that commute with G.

*Fora = 2,ittakes anice form

> pege | Tr[pP]?
> pepy | TrlpP[>

AG,2(P) = —log,

it can be interpreted as the probability that a Pauli string sampled as Tr (pP)? /2N
commutes with all Pauli stringsin G




otabilizerness asymmetry

If G(|s)) isthe unsigned stabilizer group of a stabilizer state |s):

G(|s)) ={P € Pn : P|s) = %|s)}

1 i
Gasn(p) =55 D, PP
PEG(]s))

1
PeG(|s))

then the G-asymmetry vanishes if and only if ) is stabilized by G (|s))




Basis minimized stabilizerness
asymmetry (BMSA)

* For pure states, we define the BMSA as

Aa(|9)) = L Ac(1s)),«(p)

— |S>€IP¥ISIF{11ABN S (QG(|S)) (P))

* It has the following properties
1. Itvanishesifand onlyif|y)is a stabilizer state

Itisinvariant under Clifford unitaries
Itis sub-additive

It does not increase on average under Pauli measurement (for a¢ = 1)

AR S N S

It does not increase under partial tracing (for a = 1)




Convex-roof extension

We can extend the BMSA to mixed states based on convex-roof:

= min zpz (p:),

{pi,p:i}

where the minimum is taken over all pOSSlble convex decompositions of p




Connection to basis-minimized
measurement entropy

» Basis-minimized measurement entropy is defined as

23(1¥)) = min S7**(CTy)),

where

1

P (W) = 1=

log, ) _ (o9},

are the participation entropies.

* [t can be shown that

Aa([¥)) = 25(19)).

Niroula et al, Nat. Phys. (2024)




[1]

Relation with SR.

Lower bound:
n

My (%)) <

A1) (n>1,a<2).

n—1
2Aa(|Y)) =2 Mn(|¥)) (n21/2,a<1/2)

Upper bound.:

There exists a constant C > 1 such that
Aa([9)) < 2CM(l9) (n < 2,0 >2)




Connection to coherence

* The set of stabilizer states STAB is defined as

STAB = {P :p =) pi|9)(S;l,Vip; > 0,> pj= 1}
j j

where |S;) are pure stabilizer states.




Connection to coherence

* Equivalently,

J J

where T; are incoherent states in the stabilizer basis.

— We can construct a measure of magic by minimizing a measure of coherence over all
possible stabilizer basis




Connection to coherence

BMSA:

* Relative entropy of coherence - a =1

1
* [ norm of coherence —» a = E

Both of them are strong coherence measures, thus leading to strong magic measures




BMGSA and classical simulations

* We would like to compute
(0) = (0®N|clu!--.cLuLoupCp - - - UL C1|0®N)
C;: Clifford gates, U; : non-Clifford Pauli rotation exp(i@P), O: Pauli operator

* The circuit above can be reduced to circuits containing only Paulirotations U; through

circuit compilation




BMGSA and classical simulations

* The action of Up(0) = exp(iBP) = cos(8) + isin(8) P to a stabilizer stateis

_ Jexp(ifAy) |s), P e G(|s))
Up(0)|s) = {cos(@) |s) +isin(f) |s’), otherwise

— each application of Up(6) may increase the number of coefficients by a factor of 2

* We can simulate the circuit by keeping track of the coefficients in a given stabilizer
basis (and possibly minimized over)

* The simulation can be done approximately by truncating all coefficients below a given
error threshold |¢;| < €




BMGSA and classical simulations

- The BMSA isrelated to the accuracy of such truncation: if A;(|¥)) scalesas O(N), then for
a given ¢, the required number of coefficients that needs to be retained scales as
O(exp N)

* The simulation technique can be seen as the Schrodinger picture version of the sparse

Paulidynamics method ¢ pagiic Sci Adv (2024)




Methods to compute EMSA

1. Exactbrute-force from Pauli vector (5 qubits)

2. Exactviabranch and bound (9 qubits)

3. Estimation via minimization of participation entropy




Estimation via minimization of
participation entropy

- Motivated by CAMPS algorithm X.Qianetal, arxiv (2024)

|QZ> = Uc|y) - find Clifford gate U, that minimizes sPart

* Sweep over two-qubit Clifford unitaries on neighboring sites

* Need to consider 15 gatesin C,/C,

C,:subgroup of Clifford group that maps Pauli-Z to Pauli-Z




Estimation via minimization of
participation entropy

* The probabilities for C; € C,/C, are
po;, = e_(Sgart(CiCref|'¢))_Sgart(cref|"p>))/T
where T is fictitious temperature

* Thetemperature T is slowly decreasedtoT — 0

* Equivalent to simulated annealing




Estimation via minimization of
participation entropy

L-1
— E : Z 2 § : o
HIsing — 0;,0;41 — h g,
i=1 i

» In the ferro phase, better results are obtained

if we initialize the Clifford circuit by v 7 %

Cref = H1CNOT1’2CNOT2,3 . e CNOTN—I,N 0.401

= = ©

=N

» Perfect agreement with exact values for L =
8,9

* Abletoreach L = 12,14 accurately

08 0.9 1.0 11 1.2




BMGSA of W-state

W) 0) 41010...0) + --- +]000...1)).

1
= —=(|100...

Upper bound: participation entropy

Lower bound: SRE-2

g In(N) — %m(wv —6) < A (|W)) < In(N),

Ao(|W)) ~ In(N)




Conclusions

* We have introduced a measure of nonstabilizerness, the BMSA, which is a strong
monotone and additive at large N

* The BMSA can be computed exactlyupto N = 9 qubits, and we developed a Monte Carlo
approach to estimate it for larger sizes

* We derived several inequalities between the BMSA and other known monotones,
showing how these inequalities may allow one to infer the leading behavior of the
BMSA inthelarge N limit
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