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Stabilizer group

• Given a pure 𝑁-qubit stabilizer state ⟩|𝑠 , the unsigned stabilizer group is  

•          : the set of Pauli strings with trivial phase +1

• 𝐺 ⟩|𝑠  is generated by 𝑁 mutually commuting Pauli strings
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Stabilizer basis

• Given a stabilizer group 𝐺, the set of stabilizer states ⟩|𝑠 ∶ 𝐺 ⟩|𝑠 = 𝐺  forms an 
orthornormal basis, called stabilizer basis

• This basis can be constructed by introducing destabilizers 𝑑! , such that the stabilizer 

states above can be written as 𝑑! ⟩|𝑠 !  

• For any state, we can write

⟩|𝜓 =-
!

𝑐!𝑑! ⟩|𝑠
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Aaronson, Gottesman, PRA (2024)



Magic monotones

A magic monotone 𝑀 ⟩|𝜓  has to satisfy the following properties:

Faithful: 𝑀 ⟩|𝜓 = 0 iff ⟩|𝜓  is a STAB

Sub-additive: 𝑀 ⟩|𝜓 ⊗ ⟩|𝜙 ≤ 𝑀 ⟩|𝜓 +𝑀 ⟩|𝜙

Non-increasing under Clifford operations:

𝑀 ⟩Γ|𝜓 ≤ 𝑀 ⟩|𝜓 , Γ ∈ 𝐶

Non-increasing on average under measurements (strong monotonicity):

-
!

𝑝!𝑀 𝐾!𝜌𝐾!∗ ≤ 𝑀 ⟩|𝜓
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Why strong monotones?

• Question: can we transform 𝑚 copies of a resource state 𝜌 to 𝑘 copies of a target state 𝜎 
using Clifford operations?

• With deterministic transformation, then we must have

𝑀 𝜌# ≥ 𝑀 𝜎$

• With stochastic transformation with success probability 𝑝, if 𝑀 is a strong monotone, 

𝑀 𝜌# ≥ 𝑝𝑀 𝜎$

• In the asymptotic limit (infinitely many copies), we define the regularized version

𝑀% 𝜌 = lim
&→%

1
𝑛
𝑀 𝜌&
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Veitch et al, NJP 16013009 (2014)



Known magic monotones 

• Most known magic monotones require optimization procedures to compute, thus 
difficult to compute beyond a few qubits

• Strong but not computable: relative entropy of magic, robustness of magic

•Computable but not strong: stabilizer Renyi entropy (SRE)

•Can we construct a strong and computable monotone?
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Stabilizer Renyi entropy (SRE)

• A magic monotone for pure states based on expectation values of Pauli strings

• For a pure state ⟩|𝜓 , SRE is defined as

where

• A good monotone for integer 𝑛 ≥ 2

Leone, Oliviero, Hamma, PRL 128, 00402 (2022)

Leone, Oliviero, Hamma, PRL (2020)
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Violation of strong monotonicity

• A counter example of strong monotonicity for SRE of any index can be shown using the 
state

where

• After projective measurement on the first qubit, there is a finite probability that the 

state is projected to

• The SRE is 𝑂 1 , which becomes 𝑂 𝑁  on average

Haug, Piroli, Quantum 7, 1092 (2023)
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Stabilizer linear entropy

• Stabilizer linear entropy defined as

𝑀!
lin = 1 − exp −𝑀!

    was shown to be a strong monotone

• However, it is not additive: it can only take values between 0 and 1

• The regularized version of 𝑀&
lin is always zero → not useful for asymptotic state 

transformation

Leone, Bittel, arxiv:2404.11652

Leone, Bittel, PRA 110 L040403 (2024)
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Strong monotones

Generic monotones from resource theory:

• Relative entropy of magic

• Robustness of magic Howard and Campbell, PRL 118, 090501 (2017)

Veitch et al, NJP 16013009 (2014)
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Asymmetry

•Given a group 𝐺, the 𝐺-asymmetry measures the asymmetry of a state 𝜌with respect to 
𝐺, i.e., how much it deviates from the 𝐺-symmetric states

• In recent years, the quantity has been used to probe symmetry breaking by the name of 

“entanglement asymmetry”

• Formally, 𝐺-asymmetry is a strong monotone in the resource theory of 𝐺-frameness

Gour et al, PRA 80, 012307 (2009) 
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Asymmetry

• For a discrete group 𝐺, we consider the symmetrized state (via 𝐺-twirling operation)

• The 𝐺-asymmetry is defined as

• It has the following properties

1. It is non-negative, 𝐴! 𝜌 ≥ 0
2. It vanishes if and only if 𝜌, 𝐺 = 0
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Gour et al, PRA 80, 012307 (2009) 

: quantum relative entropy



Asymmetry

• Moreover, it is a strong monotone in the resource theory of 𝐺-frameness

• The Renyi version can be defined as

which also has the two properties above, but generally not strong monotonicity.

Gour et al, PRA 80, 012307 (2009) 
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Asymmetry for groups 𝐺 ⊂ 𝑃!
• If the group 𝐺 is generated by Pauli operators 𝑃(, … , 𝑃$, then

  where 𝐺) is the group of Pauli operators that commute with 𝐺.

• For 𝛼 = 2, it takes a nice form

it can be interpreted as the probability that a Pauli string sampled as Tr 𝜌𝑃 */2+  
commutes with all Pauli strings in 𝐺
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Stabilizerness asymmetry

If 𝐺 ⟩|𝑠  is the unsigned stabilizer group of a stabilizer state ⟩|𝑠 :

  then the 𝐺-asymmetry vanishes if and only if ⟩|𝜓  is stabilized by 𝐺 ⟩|𝑠
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Basis minimized stabilizerness 
asymmetry (BMSA)
•  For pure states, we define the BMSA as

•  It has the following properties
1. It vanishes if and only if ⟩|𝜓  is a stabilizer state

2. It is invariant under Clifford unitaries

3. It is sub-additive

4. It does not increase on average under Pauli measurement (for 𝛼 = 1)

5. It does not increase under partial tracing (for 𝛼 = 1)
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Convex-roof extension

We can extend the BMSA to mixed states based on convex-roof:

where the minimum is taken over all possible convex decompositions of 𝜌
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Connection to basis-minimized 
measurement entropy

• Basis-minimized measurement entropy is defined as

    where 

    are the participation entropies.

• It can be shown that 

 

Niroula et al , Nat. Phys. (2024)
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Relation with SRE

Lower bound:

Upper bound:

There exists a constant 𝐶 > 1 such that
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Connection to coherence

• The set of stabilizer states STAB is defined as

     where L|𝑆,  are pure stabilizer states.
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Connection to coherence

• Equivalently,

    where 𝜏,  are incoherent states in the stabilizer basis.

→ We can construct a measure of magic by minimizing a measure of coherence over all 

possible stabilizer basis 
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Connection to coherence

BMSA:

•Relative entropy of coherence → 𝛼 = 1

• 𝑙( norm of coherence → 𝛼 = (
*

  

Both of them are strong coherence measures, thus leading to strong magic measures
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BMSA and classical simulations

• We would like to compute

𝐶!: Clifford gates, 𝑈,  : non-Clifford Pauli rotation exp 𝑖𝜃𝑃 , 𝑂: Pauli operator

• The circuit above can be reduced to circuits containing only Pauli rotations 𝑈, through 

circuit compilation
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BMSA and classical simulations

• The action of 𝑈- 𝜃 = exp 𝑖𝜃𝑃 = cos 𝜃 + 𝑖 sin 𝜃 𝑃 to a stabilizer state is

→ each application of 𝑈- 𝜃  may increase the number of coefficients by a factor of 2

•We can simulate the circuit by keeping track of the coefficients in a given stabilizer 
basis (and possibly minimized over)

• The simulation can be done approximately by truncating all coefficients below a given 
error threshold 𝑐! < 𝜖
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BMSA and classical simulations

• The BMSA is related to the accuracy of such truncation: if                   scales as 𝑂 𝑁 , then for 
a given 𝜖, the required number of coefficients that needs to be retained scales as 
𝑂 exp𝑁

• The simulation technique can be seen as the Schrodinger picture version of the sparse 
Pauli dynamics method
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T. Begusic, Sci Adv (2024)



Methods to compute BMSA

1. Exact brute-force from Pauli vector (5 qubits)

2. Exact via branch and bound (9 qubits)

3. Estimation via minimization of participation entropy
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Estimation via minimization of 
participation entropy

• Motivated by CAMPS algorithm

• Sweep over two-qubit Clifford unitaries on neighboring sites

•Need to consider 15 gates in𝒞*/𝒞.
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→ find Clifford gate 𝑈"  that minimizes 𝑆part

𝒞#: subgroup of Clifford group that maps Pauli-Z to Pauli-Z

X. Qian et al, arxiv (2024)



Estimation via minimization of 
participation entropy

• The probabilities for C( ∈ 𝒞)/𝒞* are

where 𝑇 is fictitious temperature

•The temperature 𝑇 is slowly decreased to 𝑇 → 0

• Equivalent to simulated annealing
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Estimation via minimization of 
participation entropy

• In the ferro phase, better results are obtained 

if we initialize the Clifford circuit  by

• Perfect agreement with exact values for 𝐿 =
8,9

• Able to reach 𝐿 = 12,14 accurately
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BMSA of W-state

Upper bound: participation entropy

Lower bound: SRE-2
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Conclusions

• We have introduced a measure of nonstabilizerness, the BMSA, which is a strong 
monotone and additive at large 𝑁

• The BMSA can be computed exactly up to 𝑁 = 9 qubits, and we developed a Monte Carlo 

approach to estimate it for larger sizes 

• We derived several inequalities between the BMSA and other known monotones, 
showing how these inequalities may allow one to infer the leading behavior of the 

BMSA in the large 𝑁 limit
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